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Two-dimensional (2D) materials hold great promise for future electronic, optical, thermal devices
and beyond, underpinning which the predictability, stability and reliability of their mechanical
behaviors are the fundamental prerequisites. Despite this, due to the layered crystal lattice
structure, extremely high anisotropy and the independent deformation mechanism of out-of-plane
bending, the proper homogenization for such materials still faces challenge. That is because the
monolayer bending is of independent deformation mechanism distinct from the traditional bulk
deformation which thereby brings couple stress to the bulk 2D materials, while the different
interlayer constraints of bulk and surface layers bring surface layer effect. In this paper, by
considering the two effects, a continuum mechanics framework for extremely anisotropic 2D
materials (CM2D) is proposed, without necessities of ad hoc experiments for the unclassical pa-
rameters. Under the framework of the CM2D, beam-like deformation, plate-like deformation and
indentation of 2D materials are studied to showcase its ability and applicability. An analytical
expression of the effective bending rigidity is derived, which can be characterized by several
dimensionless parameters. It is found that the overall bending deformations of 2D materials are
controlled by the competition between the intralayer deformation mode and the interlayer shear
deformation mode. Besides, the size-dependent modulus is also identified on the indentation of
2D materials at the pure elastic deformation regime, distinct from the size effect caused by
plasticity. In addition, we discussed the effects of monolayer bending and surface layer on the
mechanical behaviors of 2D materials. Our work not only provides guidance for the studies and
applications of 2D materials, but also serves as a good example with well-defined physical
meanings for the strain gradient, high-order moduli and couple stress in high-order continuum
mechanics theories.
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1. Introduction

Multilayer two-dimensional (2D) materials can be regarded as a stack of monolayer 2D material sheets, such as graphene, hex-
agonal boron-nitride (h-BN), transition metal-dichalcogenides, transition metal carbides and nitrides (MXenes), inorganic semi-
conductors, etc., in a layer-by-layer manner. Thanks to their excellent and exotic physical properties (Lee et al., 2008; Z. Liu et al.,
2012; Cao et al., 2018; Ares et al., 2020; Deng et al., 2020; Autere et al., 2018; Kim et al., 2021), 2D materials hold great promise in
electronic, optical, thermal devices and beyond. Furthermore, they can serve as a powerful and robust platform for exploring the
manipulation of material properties through methods such as strain engineering(Dai et al., 2019), symmetry engineering(Du et al.,
2021), interfacial engineering(Yu et al., 2021) and modular assembly(Geim and Grigorieva, 2013; Liu et al., 2016; Novoselov et al.,
2016). Underpinning these applications, the predictability, stability and reliability of mechanical behaviors are the prerequisites
(Akinwande et al., 2017; Hou et al., 2024; Rafii-Tabar et al., 2016).

Although there are many types of 2D materials with various structures, the common mechanical features are conspicuous, i.e.,
individual layer is connected by strong chemical bonds, while the adjacent layers are held together by relatively weak van der Waals
(vdW) interactions (see e.g., Fig. 1), yielding strong intralayer yet weak interlayer stiffness and strength(Wang and Zheng, 2007; Wang
et al.,, 2017; Chen et al., 2015; Shen and Wu, 2012). Besides, unlike classical materials, the monolayer constituent exhibits quite
different deformation mechanism in the atomic view(Ru, 2000). For example, the intralayer deformation of graphene only concerns
the stretches and bending of ¢ bond, while its out-of-plane bending involves the deformation of z bond, i.e., the torsional misalignment
between the neighboring p, orbitals (see Fig. 1c)(DiBiasio et al., 2007; Lu et al., 2009; Zhang et al., 2011). This discrepancy gives rise to
different energetic mechanisms governing the deformation of individual 2D monolayers, thereby leading to decoupled intralayer
stiffness and out-of-plane bending rigidity. Consequently, the attempt to correlate the stiffness of the two deformation modes through
effective thickness and Young’s modulus just like classical plate unavoidably leads to contradictories in 2D materials(Huang et al.,
2006; Shenderova et al., 2002; Wang and Zhang, 2008). Moreover, the internal layers and outmost layers are under different interlayer
constraints or coordination environments (see Fig. 1d). That is the internal layer has two neighbors on both sides, while an outmost
layer only has one neighbor on its single side to interact with. Up to now, many methods have been proposed to study the mechanical
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Fig. 1. The atomic essence of complex deformations in 2D materials. (a) Three typical deformations of graphene observed in experiments: beam-like
bending of a 3-layer graphene sheet over a 2-layer h-BN step(Han et al., 2019), plate-like bending (bulged bubble) of graphene, and indentation of
multilayer graphene flakes (b) Atomistic model of multilayer graphene deformation composed of discrete monolayer deformation. (c) Schematic
illustrations of the ¢ bonds (accounting for intralayer deformation) and 7 bond (related to the out-of-plane bending of monolayer) (d) Schematic
illustrations of interlayer vdW interactions, which also exhibits the origin of surface layer effect where interlayer constraints or coordination en-
vironments for outmost layers are distinct from internal layers.
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behaviors of 2D materials, such as molecular dynamics (MD) simulations and first-principle calculations, etc. However, theses
atomistic models are usually limited to small scales, due to their notoriously high degrees of freedom.

Thus, more efficient continuum mechanics theories for 2D materials are strongly desired, which treat materials as continua and
involve only a limited number of variables or fundamental unknowns to deal with. Developing an atomistic-based continuum model
that correlates with atomistic configuration might be the first instinct to address the unique features of 2D materials. Indeed, inspired
by the atomistic models, the interatomic potential is incorporated into a continuum model through the Cauchy-Born rule and
equivalence of strain energy and interatomic potential energy(Zhang et al., 2002; Arroyo and Belytschko, 2002). Subsequently,
continuum mechanics models based on various interatomic potentials are proposed for single-walled nanotubes or monolayer 2D
materials(Zhang et al., 2004; Arroyo and Belytschko, 2004a; Guo et al., 2006; Yadav and Ghosh, 2022). In comparison, the incor-
poration of interlayer interaction into the atomistic-based proposal turns out to be considerably challenging, because the map between
macro-strain and interlayer relative motion is not properly established. Thus, a simplified cohesive model is employed by only
considering the interlayer distance(Arroyo and Belytschko, 2004b; Lu et al., 2007), which neglects the interlayer shear resistance.
Similar interlayer consideration is integrated into the foliation model for multilayer 2D materials(Ghosh and Arroyo, 2013). Merely
with atomistic configurations and interatomic potentials, atomistic-based models intend to bridge the continuum mechanics model
with their atomistic bases. Nevertheless, the implementation is highly complicated and has to be re-formulated for different atomistic
lattice structures or for different forms of interatomic potentials. Thus, the development of a more simplified continuum mechanics
model but with sufficient precision for general 2D materials is eagerly desirable.

On the other hand, the effective continuum mechanics models may appear to be phenomenological compared to their atomistic-
based counterparts, but they offer an alternative approach to circumvent the reliance on specific lattices or interatomic potentials. For
2D materials, low-dimensional continuum models such as beam, membrane and plate have been abstractly established, with material
parameters determined through simple experiments or simulations. For example, a multibeam shear model(Liu et al., 2011) regards
each layer of multilayer 2D materials as a beam, with interlayer filled with media only accounting for shear deformation energy. On the
other hand, by neglecting the out-of-plane bending, the deformable tension shear chain model for 2D material-based nacre-like
structures was developed (Liu et al., 2012; Liu and Xu, 2014; He et al., 2019). To directly address monolayer bending effect, an in-
dependent monolayer bending rigidity is assigned to each layer(Yue et al., 2012), leading to the modified Timoshenko beam model
(Qin et al., 2020). However, all the above-mentioned bending models are constrained by the planar cross-section assumption, which is
then discarded in the study of the bending rigidity of 2D material beams(Ma et al., 2020; Chen et al., 2023) and plates(Ma et al., 2022)
by solving the intralayer equilibrium equations of each layer on equal-curvature configuration. Furthermore, a more general beam
theory for 2D materials, which is not bound to equal curvature but still maintains incompressibility of thickness, is developed(Huang
et al., 2023) by coupling the in-plane equilibrium equation of each layer with bending deformation. Furthermore, by treating the
in-plane displacement as a continuous function along the thickness coordinate, the entire equilibrium equations of each layer can be
simplified as several partial differential equations, so that the analytical solution for large layer number becomes feasible. Nonetheless,
their operation of continualization is purely mathematical and the complete three-dimensional (3D) deformation is also not consid-
ered. So far, the effective continuum mechanics models mainly focus on low dimensional structure models and are stuck in ‘unchanged
thickness’ assumptions. It is hard for them to deal with 3D deformation scenarios, like indentation.

In addition, for micro- and nano- materials, size effects are highly significant and often dominate their unique mechanical be-
haviors. Hitherto, many general continuum mechanics theories have been proposed to address such features. For example, the surface
effect model(Gurtin and Ian Murdoch, 1975; Huang and Wang, 2006; Wang and Feng, 2007) treats the internal volume and the surface
as different materials with different material parameters, so that the size changes the specific surface area and thus the overall response
of the material. Another example is the high-order continuum mechanics model(Toupin, 1962; Mindlin and Eshel, 1968), which
employs the higher order gradients of displacement or gradients of strain as deformation measures in addition to the strain. Some of the
versions are also known as strain gradient theory(Fleck and Hutchinson, 1997; Wei, 2001) or couple stress theory(Yang et al., 2002;
Hadjesfandiari and Dargush, 2011). This kind of theories exhibits size dependent mechanical behaviors, because the additional
high-order deformation measures are no longer dimensionless. Some more theories are discussed in the comprehensive review
(Srinivasa and Reddy, 2017). Despite these generally formulated theories, some of the material parameters don’t have clear physical
meaning and are also hard to measure in experiments which hinders the wide application of these theories. However, the unique
features of 2D materials provide a good testbed to verify the non-classic continuum mechanics theories. But, up to now the continuum
mechanics theory applicable to the general deformation of 2D materials is still lacking.

In this work, we propose a continuum mechanics framework for 2D Materials (CM2D), which is transversely isotropic integrating
monolayer bending and surface layer effects. The layout of this paper is as follows. In Section 2, the general 3D form of the CM2D is
formulated and the differences with the previous high-order continuum mechanics and surface effect model are also elucidated. In
Section 3, the mechanical behaviors of beam-like, plate-like deformation and indentation of 2D materials, are studied under the
framework of the CM2D. In Section 4, the monolayer bending and surface layer effects on effective bending stiffness of 2D materials are
systematically discussed. Finally, the conclusion remarks are given in Section 5.

2. Continuum mechanics framework for 2D materials

In this section, the general 3D form of the CM2D is first formulated, followed by some comparison and comments. Suppose n layers
of 2D material sheets are initially stacked parallel to the x-0-y plane with a distance of t. The total thickness is given by h = (n — 1)t.
The intralayer deformation of individual 2D material sheet, e.g., graphene as illustrated in Fig. 1c, consists of the length and angle
changes of ¢ bonds, while its out-of-plane bending mainly concerns the deformation of the z bond. As a result, we assign independent
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intralayer parameters (i.e., 2D Young’s modulus Esp and Poisson’s ratio ;) and bending parameters (i.e., bending rigidity D,, and
Gaussian bending rigidity Dg) to the continuous 2D material sheets. Besides, the interlayer interaction originating from vdW in-
teractions provides the resistance of interlayer shearing and out-of-plane tension/compression (see Fig. 1d), which are depicted by the
interlayer continuous media with corresponding shear modulus G; and Young’s modulus E;. All these parameters can be determined
through fundamental experiments or molecular dynamics (MD) simulations. Take h-BN as an example, the mechanical parameters are
obtained by using Tersoff potential(Kinaci et al., 2012) for intralayer interactions and ILP potential(Ouyang et al., 2018) for interlayer
interactions in the large-scale atomic/molecular massively parallel simulator (LAMMPS), as shown in Table 1.

Only the (n—2) internal layers measured h;; = (n—2)t in thickness (the part between the two surfaces represented by black dot
lines in the middle and right panels of Fig. 2a) are homogenized, which will be referred to as the ‘bulk’ part thereafter. The in-plane
parameters of the ‘bulk’ part are Exp = Ezp/t and vp. The transverse Young’s modulus is E; and shear modulus G;. In addition to this
depiction of standard transversely isotropic materials, the homogenized bending moduli, i.e., D, = Dn/t and D, = D, /t, naturally
emerge from the independent monolayer sheet bending rigidities. Note that in our model, the bulk bending moduli have a clear
physical origin. They are directly related to the bending rigidity of monolayer 2D material sheets.

The outmost 2D material sheets together with the rest adjacent half interlayers (the parts outside the two surfaces represented by
black dot lines in the middle and right panels of Fig. 2a) are reserved, which will be referred to as the ‘surface’ part thereafter. The
‘surface’ part needs special treatment, because each outmost sheet has adjacent sheets only at its single side to interact with, while its
internal counterparts have adjacent sheets at both sides (Fig. 1d). Note that there is a distance of t/2 between the outmost 2D material
sheets and the ‘bulk’ part, filled by interlayer media. By retaining t/2 interlayer media layers with the outmost 2D material sheets, each
internal 2D material sheet can be regarded as situated in the middle of two t/2 interlayer media layers.

Denote the ‘bulk’ part displacement by u;, and its deformation is measured by strain

1
&j = ) (ui_j + uj.i) (1a)

and the additional ‘bulk’ part curvature (related to sheet curvature)

Kap = W ap (lb)

where we denote w = us for discrimination. The Latin letters in subscripts represent the indexes of full 3D dimensions, e.g. taking
values from {x,y,z}, while the Greek letters are the ones of in-plane 2D dimensions, e.g. taking values from {x,y}. The comma denotes
derivative, i.e., (); = d/0dx;. Note that Eq. (1Db) is also part of the high-order gradient of displacement.

The ‘surface’ part displacement is denoted by ul@, where the superscript j = 1, n respectively representing the bottom and top
layers, is independent of the subscript. The in-plane strain and sheet curvature are expressed as

I .
sf,l/), =3 <u§)/, + u}}){,) (2a)
Ky =wly, (2b)

The transverse strain of the ‘surface’ part actually belongs to the half layer of interlayer media, which is assumed to be uniform along z-
axis, and expressed by the displacements of neighboring outmost 2D material sheet and the interfaces of the ‘bulk’ part, as

o 1 ud —u, . W pw
i) _ o a' (i) a S 2
3 =3 < g2 T T 2 (20)
i (i) _ (i)
(i) _ (W W)n 2d
€33 t/2 (2d)
where u,, w and w, are evaluated at the boundaries of the ‘bulk’ part z = +h;;/2 and n® = — 1, n™ =1 are introduced for

compactness. The first term in Eq. (2¢) is a difference quotient to approximate the derivatives of in-plane displacement components
along thickness direction. The second term is a simple average of w(fl) and w, to approximate the derivative of out-of-plane
displacement component along in-plane direction.

For the ‘bulk’ part, the homogenized constitutive relationships are

Table 1
Mechanical parameters of h-BN determined through MD simulations.
E>p (GPa-nm) vy Dy, (eV) Dy (eV) G, (GPa) E, (GPa) t (nm)
Values 247.3 0.3051 0.8738 1.57* 7.655 37.35 0.3201

* Note: the value of Gaussian bending rigidity has been calculated by DFT (1.52 eV)(Wei et al., 2013) and atomistic potential based continuum
mechanics model (1.62 eV) (Davini et al., 2017). Here, we take the average of the two.



H. Liu et al. Journal of the Mechanics and Physics of Solids 194 (2025) 105911

(a)

n

n—1 Internal
" Continualization n — 2 Homogenization
T c— —
3
2
z i=1
‘J—'y = 2D Material Sheets Interlayer Media ‘Bulk’ Part e ‘Surface’ Part

X

GZZ

Fig. 2. (a) The schematic illustration of continualization and homogenization from 2D material (the left panel) to its multilayer continuum model
(the middle panel) and its internal homogenized model (the right panel). (b) External loads applied on a CM2D solid. (c) Stress and couple stress
borne by the ‘bulk’ part element (the body force is masked). (d) Surface stress, stress, bending moment and external traction borne by the outer half
of the topmost ‘surface’ part element. (e) Surface stress and stress borne by the inner half of the topmost ‘surface’ part element. Please note that not
all stress components and things like that are shown, for the sake of conciseness. (b)~(e) only schematically exhibit which element surfaces the
stress components, couple stress components, etc. are applied on.

ow=1 et + iwy,,‘”” (3a)
6a3 = 2G€y3 (3b)
033 = Eie33 (3¢)
Map = (Dm — Dg) Ky, 8ap + Dy (3d)

where the dummy index convention and 2D Kronecker delta &,; are adapted for convenience, unless otherwise specified. o; is the
symmetric part component of the stress tensor. Note that, the Poisson coupling between in-plane and transverse deformations is
ignored (see Eq. (3c)) due to the weak interlayer interaction. Moreover, the bulk curvature k.4 naturally emerges from the distinctive
sheet bending of 2D materials (Eq. (3d)). Thus, its work conjugate, i.e., the couple stress m,; have clear physical meanings in this
homogenized model. They are directly related to the 2D material sheet curvature and the moment that drives such curvature,
respectively. In addition, the bulk bending moduli Dy, and D, are directly related to the bending stiffness of monolayer 2D material
sheets.

For the ‘surface’ part, the constitutive relationships of in-plane deformations and surface bending are the same as those of a
monolayer 2D material sheet, i.e.,

; Espy, E ;

i _ 2D¥p (i) 2D (1)
=1 ygo;y By 1 ke (4a)
M) = (Dm — Dg) k0645 + Dyrly (4b)

Since the transverse surface strain is assumed to be uniform along thickness, the constitutive relationship is therefore directly inte-
grated out along z, resulting in

ol = Gitel) (40)
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1
o5 :EE[ ) (4d)

Note that ekl and K uf ) still adhere to the classical definitions of strain and curvature, respectively. And ma/, is the bending moment of

plate elements. By comparison, al(d) is surface stress component. It has the dimension of stress multiplied by length (e.g., with the unit of

GPa-nm). Thus, the whole model can be formally regarded as a homogenous material with extra layers attached to its transverse
boundaries.
To derive the equilibrium equations, the virtual work principle is adapted as

/ 035,40 + / My + / o6eds + / max)ds = / foudQn + / sowds + / MW odS + / f0ouds + / s 5ulds

Qin sl st os|

(5)

where Q;, represents the 3D domain of the ‘bulk’ part (see Fig. 2b), S/ the 2D domain projected by the 2D material sheets to their initial
parallel plane, and S* the transverse surface of the ‘bulk’ part initially perpendicular to the 2D material sheets. The terms on the left-
hand side of Eq. (5) represent the internal virtual work related to the virtual strains and curvatures of the ‘bulk’ part and the ‘surface’
part, while the ones on the right-hand side represent the external virtual work related to the virtual displacements and bending angles.

fi is the external volume force applied to Qi,, and s; is the external traction apphed on S*. f is the external traction applied on the

‘surface’ part, or to be specific, on the outmost 2D material sheets. s ) and ma is the external forces and moments applied on the edges

of the outmost 2D material sheets, respectively. Note that, the superscrlpts are not forced to dummy index convention. Instead, they are
bound by another convention for the sake of conciseness, i.e., the integrand in Eq. (5) needs to be summed over the two outmost
surfaces, as long as there is a superscript. For example, in the integrand, a?b) = a®b® +a™b™ and a®b = a®Wb|,_ 4 ,»+

mp)
@ Olz—py2-

Then, we can derive the equilibrium equations by the principle of variation, as detailed in S2 of the Supplementary Information. As
a result, in Q;;, we have

Ogjj +f.=0 (6a)
03jj — Mapap +f3 =0 (6b)

On the ‘surface’ part, we have

. o 2n® . .
(af}},ﬂ +) = Ta&‘%) ou) =0 (7a)
1 . 2n@® . . . .
(378~ 2o =i £ )w =0 7b)
2n0 .
<6a3n3 — %65;%)5110 =0 (7C)
1 0} Zn(i) (i)
0333 —Eo'a:;a — T633 w=0 (7d)

On the surfaces of the ‘bulk’ part initially perpendicular to the 2D material sheets, i.e., S*, we have

(Cupny —$4)0Ug = 0 (8a)
(0'3/3“/} — Mep sy — Sg)(SW =0 (Sb)
(Mapny —my)ow, =0 (8c)

On the edges of the ‘surface’ part, we have

({,m ny— sg») sul) =0 (9a)

1 .
Eaflgnaéw =0 (9b)
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1 ® 0 ) 510
Eaagna — My Mg —S3” | WY = 0 (9¢)

(m%n/; — mfﬁ)ﬁwf(i) =0 9d)
where n; is the component of the unit outward normal vector of the considered surface. Egs. (6) are the equilibrium conditions of a
‘bulk’ part element (Fig. 2c). Different from the standard bulk equilibrium equations, an additional term naturally emerges from the
independent sheet bending in Eq. (6b). This additional term is related to the asymmetric part of the stress tensor s,3 = — My, which is
expressed in terms of couple stress using the moment balance conditions (see S3.1 in the Supplementary Information). Eq. (7a) and Eq.
(7b) are the equilibrium conditions of the outer half of the outmost ‘surface’ part element (see Fig. 2d for the outer half of the topmost
‘surface’ part element as an example). Eq. (7c¢) and Eq. (7d) are the equilibrium conditions of the inner half of the outmost ‘surface’ part
element (see Fig. 2e for the inner half of the topmost ‘surface’ part element as an example), which actually provide the coupling
relationships between the ‘bulk’ part and the ‘surface’ part. The equilibrium conditions of the ‘surface’ part element have to be

expressed in two parts, i.e., the outer and inner parts, because we take the average of w!? and w,, to approximate the derivative of out-
of-plane displacement component along in-plane direction (see Eq. (2¢)). The detailed derivation of Egs. (6) and (7) from the viewpoint
of element equilibrium can be found in S3 of the Supplementary Information.

Egs. (6)~(9) are the general governing equations and boundary conditions of the continuum mechanics framework for 2D ma-
terials (CM2D). Overall, the proposed CM2D model is transversely isotropic, featuring surface elasticity and high-order displacement
gradient terms. Here, we make some remarks regarding the two unclassical features.

Surface elasticity has been well identified by the widely accepted standard surface effect model(Gurtin and Ian Murdoch, 1975;
Huang and Wang, 2006; Wang and Feng, 2007). It is motivated by such idea that compared to their bulk counterparts, atoms in
surfaces or interfaces of materials usually possess different coordination environments, charge distributions and lattice constants, etc.,
leading to mismatches and extra interactions with the atoms in bulk region. This renders different energy structures and stiffness to the
surface and the bulk(Javili et al., 2013; Mozaffari et al., 2020). Due to the strong chemical bonds in the 3D crystal lattices, creating a
fresh surface by removing part of the material can drastically disturb the original equilibrium state and drag the original crystal
structure into reconstruction, leading to a severe distortion of the surface lattice and the development of residual stress. Therefore, for
traditional 3D crystals, it is sound to treat the surface and the bulk regions differently. However, in our model, although the ‘surface’
part and the ‘bulk’ part are also treated differently, nevertheless, the underpinning physical ideas are mainly related to the different
vdW coordination environments. It only makes each outmost layer interact with the rest layers differently from its internal coun-
terparts. Since the vdW interaction is pretty weak, the disturbances of changed coordination environments to the crystal structure of
the outmost layers are negligible. As shown in Fig. S1, the residual stress of multilayer graphene is almost inappreciable compared with
materials with a 3D crystal lattice, like the face-centered cubic Au. Hence, all the layers still share the same elastic parameters, unlike
the standard surface effect model, where the surface elasticity parameters need to be determined through ad hoc experiments.

High-order displacement gradients have been also employed as additional deformation measures in high-order continuum me-
chanics theories(Toupin, 1962; Mindlin and Eshel, 1968), such as couple stress theories(Yang et al., 2002; Hadjesfandiari and Dargush,
2011). The comparison is made as follows. First, the definition of curvature is different. In couple stress theories, the curvature is
usually defined as the symmetric part or the skew symmetric part of the gradient of rotation vector. The latter is related to the curl of
the displacement field. By comparison, the definition of curvature in the CM2D model is inherited from the plate theory, which is
simply the in-plane second-order gradient of the out-of-plane displacement component and is physically plausible. This leads to
another difference that the curvature tensor is a 2D tensor in the CM2D model instead of a 3D one as in the couple stress theory.
Besides, although these high-order gradients in high-order continuum mechanics theories are usually interpreted as curvature or
torsion, their connection to a specific micro- or atomic structure remains subtle(Neff et al., 2016; Shaat et al., 2020; Srinivasa and
Reddy, 2017). In the CM2D model, otherwise, the bulk curvature is directly related to the 2D material sheet bending curvature. The
physical picture in the atomic view is clear. Moreover, unlike the CM2D model, the additional stiffness parameters related to
high-order terms in high-order continuum mechanics theories usually need to be determined through ad hoc experiments.

Although an analytical solution may be feasible in certain simplified scenarios, it is hard to obtain in general. But through the finite
element method, which can be conveniently implemented via, e.g., the weak-form-PDE module in COMSOL Multiphysics® (COMSOL),
we can always obtain the numerical solutions. In Section 3, we will give some typical solutions under the framework of the CM2D
model.

3. Solution of the CM2D model
In this section, some fundamental classical mechanics models, such as beam, plate and indentation, are re-considered within the

framework of the present CM2D model. These elementary problems are taken as examples to demonstrate the applicability of our
CM2D model and explore the typical deformation behaviors of 2D materials.
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3.1. Beam model of 2D materials

3.1.1. Beam model within the CM2D framework
To derive a beam model, consider beam-like bending of the multilayer 2D materials within x-o-z plane. The Greek subscript takes
value x, and the Latin one takes values from {x,z}. The components of displacement u, and u, will be denoted by u and w for simplicity.
The dummy index convention is abandoned in this subsection.
Neglecting external volume force f;, and integrating Eq. (6b) along the thickness of the ‘bulk’ part, we arrive at
hin

2
Uzzlzzf% - Gzzlz:j% = | ( — Ozxx + mxx,xx)dz (10

in

T2
Based on Eq. (7a), the in-plane displacement of the ‘surface’ part is expressed as

u® =u+ nz% (uz +wy) —

t .
e (w(}() + w,x> (11a)

Using Eq. (7b) to cancel agQ in Eq. (7d), one obtains the expression of c,,. Then, by plugging 6., and u® into Eq. (10), the out-of-plane
equilibrium condition of the entire structure becomes

5IT'I.}11:"]A/..XXXX + Dm <w¥n_})(x)( + W(l)Z'XX) -

(11b)

t
G; ux,x‘ hin — ux,x| hin. + hinw.xx +35 u,zx| hin. + u.le b T WAxx‘ hin +Wxx :fz(l) +fz(n)
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Meanwhile, plugging Eq. (11a) into Eq. (7¢) and cancelling u? and its derivatives, the in-plane equilibrium condition of the ‘surface’
part becomes

Eop

T (W.(Qxx + W.xxx)) —GnO(u,+wy) +f0=0 (11¢)
p

t t
<u,xx + o (U + W) — o)
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Similar to the classical beam theory(Gere and Timoshenko, 1995), we herein assume that a) no external shear force is applied on the
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Fig. 3. (a) The atomic model of 3-point-bending h-BN beams in MD simulations. (b) The loads against middle point deflections of a 5-layer h-BN
beam with L=10 nm and L,=4.9 nm, and (c) its in-plane displacement distributions along z directionat x/L = 0.3 when wy=0.19 nm. In (b) and (c),
S.Homo represents the simple homogenization model.
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outmost surfaces, i.e., f. = 0. This leads to the anti-symmetric distribution of in-plane displacement over the thickness, i.e., u(x, —z) =
—u(x,z) and u™ = — u™. b) The thickness does not change during deformation, i.e., w(x,z) =w(x) = w(x). The external transverse
load is denoted by g = £ + £\”. Then, the in-plane equilibrium condition Eq. (6a) for ‘bulk’ part becomes

E
1—2D2u.xx + Gtu.zz =0 (1 23)
—12

And the out-of-plane equilibrium condition for the entire structure can be obtained from Eq. (11b) as

NDyW xoex — G 2u,x)thl + tu,z,(|zjh +(hn+twa | =q (12b)
2 —2

The equilibrium conditions for the ‘surface’ part are obtained from Eq. (11a) and Eq. (11c) as

- t
ud =y + nsUs (12¢)
E. t
1772')”2 <u,xx + niuiw) —Gny(uz+wy) =0 (12d)
]

Egs. (12) are the governing equations of the beam model within the CM2D framework. The displacement of the ‘bulk’ part is now
partly coupled with the one of the ‘surface’ part, so we can solve the bulk displacement first, and then obtain their surface counterparts.
Besides, in the second term of the right-hand side of Eq. (12¢), n,u, is the outward derivative of the bulk displacement u. Therefore, the
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Fig. 4. (a) The ratios of intralayer tension energy Uy, and interlayer shear energy U, to total strain energy Us of h-BN beam with various n and L.
(b) The normalized intralayer normal strain by its counterpart of the Euler-Bernoulli beam at x/L = 0.3 for a 10-layer h-BN beam with various L. The
distribution of intralayer normal strain at x/L = 0.3 for (c¢) 2L/t = 300 and (d) 2L/t = 700 for h-BN beam with various n.
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outmost layer displacements can be regarded as the linear extrapolation of the bulk ones t/2 away from the bulk boundaries.

3.1.2. Solu

tion of the Beam model

The 3-point bending is a benchmark test for beams. In this sub-section, we will take a 3-point-bending beam as an example to
discuss the bending behaviors of 2D material beams. As shown in Fig. 3a, suppose a 3-point-bending beam with its center located at (0,
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Fig. 5. The effective bending rigidity Dy of (a) graphene and (b) h-BN beams as a function of layer number n parameterized by half length L, where
the ‘strong’ and ‘weak’ correspond to the no-interlayer-shear-deformation limit and the no-interlayer-shear-resistance limit. The dimensionless
effective bending rigidity Dy /Dgp of h-BN beam as a function of (c) monolayer aspect ratio 2L/t parameterized by number of layers n, (d) number of
layers n parameterized by monolayer aspect ratio 2L/t, (e) number of layers n parameterized by overall aspect ratio 2L/h, and (f) normalized
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coefficient ky, parameterized by number of layers n.
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0). The undeformed middle line coincides with the x axis and is measured 2(L + L;). The indenter is located at x = 0 and the two
supporters at x = +L, respectively. Through obtaining the analytical solution (detailed in S6 in the Supplementrary Information), the

tension-shear characteristic length I, = | /Eapt/ (l - z/g) G, and bending-shear characteristic length I, = /Dy, /Gt are identified. Then,

using the deformation length scale 2L, we further define their dimensionless versions k; = 2L/l and k, = 2L/l,. Besides, the numerical
solution employing the weak-form-PDE module of COMSOL is also obtained.

As shown in Fig. 3b and c, both our analytical and numerical results match fairly well with MD simulations (see Fig. 3a and S1 of the
Supplementary Information for detail). For comparison, we also construct a simple homogenization model (S.Homo.) without
considering the surface layer effect of 2D materials. Its results are too soft, because the concentrated 2D material sheets at the outmost
layers are re-distributed inward, impairing the total bending rigidity. The continuous beam solution proposed by Huang et al.(Huang
et al., 2023) is also close to the MD simulations, though their results are a little bit stiffer. This is because their solution actually
corresponds to a beam model similar to ours, except that the two outmost half interlayers are also stiffened using the bulk materials.

Furthermore, as another validation of our model, the stepwise bending experiments were also carried out, where multilayer
graphene was placed on the graphene steps. Under the competition between the strain energy and interfacial adhesion energy, the
multilayer graphene can reach an equilibrium configuration (detailed in S5 of the Supplementary Information). As shown in Fig.S6, the
prediction of CM2D matches the experimental measurements well.

3.1.3. Deformation mode of 2D material beams

The bending deformation mode of a 2D material beam is controlled by the competition between the intralayer tensile and interlayer
shear deformation modes. The increase in n can suppress the intralayer deformation mode, while encourage the interlayer shear
deformation mode. As a result, the percentage of intralayer tension strain energy decreases, while that of interlayer shear strain energy
increases (see Fig. 4a). This is because when n is small, the demand for interlayer shear stress to transfer loads, thereby maintaining the
intralayer deformation and the planar cross-section, is relatively small. Thus, the deformed cross-section doesn’t stray away too much
from the planar shape and the distribution of normal strain on a cross-section remains linear (see Fig. 4c and d). However, as n in-
creases, maintaining the intralayer deformation and the planar cross-section becomes so energetically costly that interlayer shear
deformation manifests itself. The deformed cross-section tends to be curvy and the distribution of normal strain becomes nonlinear.

On the other hand, intralayer deformation modes tend to prevail in slender beams. The decrease in tension strain energy ratio Uy,
/Us and the increase in shear strain energy ratio Ug,./Us as n increases are significantly slowed down (see Fig. 4a). Based on Eq. (6a),
the increase in intralayer tension stress can be expressed as do, = — (d7 /dz)dx, which suggests that the intralayer tension stress
picks up its value through the accumulation of adjacent interlayer shear stress differences. For stubby beams, the length for intralayer
stress to accumulate is insufficient. Therefore, the intralayer stress or strain level is low compared to that of the Euler-Bernoulli beam
(EB), while the interlayer shear deformation mode is encouraged to cope with the external loads. The deformed cross-section becomes
curvy, and the distribution of normal stress or strain becomes nonlinear upon a slight increase in n (Fig. 4c). By contrast, for slender
beams, the intralayer tension stress or strain can be fully developed and even reaches the EB level through a quite small region, leaving
most parts of the beam possessing an intralayer tension stress or strain level extremely close to the EB. As shown by Fig. 4b, the
intralayer strain approaches that of EB upon increasing L. In this case, the deformed cross-section deviates slightly from the planar
assumption, and the distribution of normal stress or strain is relatively close to a planar pattern, even though n increases (Fig. 4d).

3.1.4. Effective Bending Rigidity of 2D Material Beams

Bending rigidity is an important parameter of 2D material beams, which is different from the one of a single EB or a stack of EBs
because of the finite interlayer shear resistance(Chen et al., 2015; Wang et al., 2019; Han et al., 2019). Here, we will discuss the
bending rigidity of h-BN beams based on our CM2D beam model.

According to the 3-point-bending of the EB beam and Eq. (S6.3c), the effective bending rigidity is expressed as

pL® G.L*t

D= — = ——0— (13)
T 6we 245, L

For a specific material, Ay only depends on the deformation length scale 2L and the number of layers n (see Eq. (S6) in the Supple-
mentary Information), and so does D.. The dependence of D, of two popular 2D materials, graphene and h-BN, are shown in Fig. 5a
and 5b, respectively (see Table.S1 in the Supplementary Information for material parameters). The EB bending rigidity of 2D materials
is(Chen et al., 2023; Koskinen and Kit, 2010)

n(n? — 1)Eypt?
12(1 - yg)

Then, normalize the effective bending rigidity by Dgg, and the resultant dimensionless effective bending rigidity becomes

Dgp = + nDp, 14

Deff _ 1

(15)
Dy m2-1) | 12| 5 1
8n krz + g Ek:IA_k

Dy =
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which explicitly depends on dimensionless parameters k;, k; and n. For now, since we are focused on a specific material, i.e., h-BN, the
characteristic lengths, [; and [, are settled. Only the effects of geometric parameters L and n are discussed.
As shown in Fig. 5c, the dimensionless effective bending rigidity increases with L. As L—oo, Dy approaches its limit value, i.e.,

12+ (n® - 2)B
HmDer = Tone + (@ —n)B (16)
which approaches to 1 as n increases. This is because the intralayer deformation mode gradually dominates the bending deformation as
the beam becomes increasingly slender. Therefore, the effective bending rigidity could be slightly larger than its EB counterpart, if n is
quite small yet L is large enough. Similar phenomenon has also been reported by Huang et al. (Huang et al., 2023) By contrast, the
increase in n will reduce Dy, and even drive D,y to decay proportionally with n=2 when n is large enough (see Fig. 5d). More
specifically,

— k? 1
Dy ~ — )
1- %tanh (’%’)

This suggests that the effective bending rigidity of 2D material beam Dy, scales with n when n is large, given that Dgg scales with n®.

If the overall aspect ratio A = 2L/h = 2L/(n —1)t or the normalized tension-shear coefficient ky;, = k,/(n — 1)is fixed so that L can
vary nearly proportionally to n, Dy will increase and approach a constant as n increases (see Fig. 5e). The limit value depends on A or
kg in such way that

a7)

1 1

! e,
k=1
lho .
wt2A? (lr(:)k—ZtAtanh (%) ) k2,5 ((:)k—katanh%>

which increases monotonically and approaches 1 as A or k;, increases. More interestingly, Eq. (18) describes a master curve, to which
the Dgy v.5. A curve or Dgs v.5. kg, curve will quickly collapse as nincreases (see Fig. 5f). In other words, it won’t bring too much error to

18

limD, ) = =
('H"" d A or kp 81?21(:1

regard Dy as a function independent of n (depicted by Eq. (18)), if n is not so small, e.g., n > 10.

3.2. Plate model of 2D materials

3.2.1. Plate model within the CM2D framework
Different from one-dimensional beam model, the plate model is used for 2D bending deformations. Similarly, two assumptions are
adapted: a) no shear on the surface and b) no thickness change during the deformation. Then, the governing equations of the plate
model can be obtained through similar operations in Section 3.1. For the ‘bulk’ part, we have
3 qup,up + 3 ﬂua,/fﬂ + Gily33 =0 (19a)

NDW gags — Gy ZuM{z by tua,a3|zjh +(hn+tWae | =q (19b)
2 2

and for the ‘surface’ region, we can obtain

1 EZD t 1 EQD t

5 ?Up (Uﬁ.a/x +§u/i,3a/in3) + 3 m (ua,ﬂﬂ +§Ua,3ﬂ/in3) — nth(Ua,g +W.a) =0 (19¢)
W _ t

u,” = Uq + éu(1,3n3 (19d)

Moreover, the axisymmetric condition is ubiquitous in nano-experiments, which can be used to simplify the governing equations, i.
e., Eg. (19), into
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I A =0 20
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for the ‘bulk’ part, and

Eop 0 [ou, u, to/o (ou u ou, dw\

T2 (5(5*7)*5&(5(5*?))“)‘"@Gf<a—z+a>*° (200)
; t du,
0 — —

u, u, + 2 % n, (20d)

for the ‘surface’ part. V2 = ;—224’% £ is the 2D axisymmetric Laplace operator and the subscript r’ in Eq. (20) denotes the radial
component. The dummy index convention is not applied to Eq. (20). Similarly, we may solve the bulk displacement first, and then
obtain their surface counterparts. The outmost layer displacements can be regarded as the linear extrapolation of the bulk ones t /2

away from the bulk boundaries.

3.2.2. Solution of the Plate model

Bulging a bubble has been used for measuring important parameters for 2D materials, such as interlayer shearing strength,
intralayer stiffness and bending rigidity(Wang et al., 2017, 2019; Yue et al., 2012; Li et al., 2024). It is even developed to uniaxially
stretch the specimens by employing a rectangular-shaped bubble, making it capable of performing the most fundamental mechanical
test(Cui et al., 2023). In this subsection, we take the axisymmetric bubble as an example to explain the numerically solving method.

The bubble solution is obtained by employing the weak-form-PDE module of COMSOL based on the governing equations Egs. (20).
Denote the radius of the bulged area by R. Considering the axisymmetry, the bulk in-plane displacement u,(r, ) is defined on a 2D
domain [0,R] X [— hin /2,hin /2], while the out-of-plane deflection w(r) and the surface in-plane displacement ul (r) are defined in an
interval [0,R]. Note that we treat u,(r,z) and w(r) as two general mathematical functions, so they don’t need to be defined on the same
domain. Besides, w(r) needs to be mapped to the 2D domain and u,(r, +h;, /2) to the interval, so that all the strain components given by
Eq. (1) and (2) can be properly evaluated. The fixed boundary conditions are expressed as u,(R,z) = 0, ut) (R) =0, w(R) =0, ow(R)
/or = 0. A uniformly distributed load is prescribed to w(r) field as a virtual work term. As shown in Fig. 6, the solution of the CM2D
plate model matches fairly well with MD simulations, while the solution of simple homogenization model without surface layer effect
(S.Homo.) predicts a much more softened displacement as expected. The MD simulation is detailed in S1 of the Supplementary
Information.

(a) wwo (0)) W

i The Surface (u;’,w)

S
——
5
=
p—
£
VA A e A

© (d)

0.6
0.4

0.2

z (nm)

-0.2

-0.4

-0.6

r (nm)

Fig. 6. (a) Atomic model of bulged circular 5-layer h-BN bubble. (b) Illustration of COMSOL model employing weak-form-PDE module for nu-
merical solution. (c) Deflection curves and (d) in-plane displacement distribution along the z direction at r/R = 0.3 of a 5-layer h-BN bubble with
R=6.546 nm and q=0.0593 GPa.
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It is worth mentioning that the numerical method for bubble can be easily adapted for rectangular plates. Since the axisymmetry is
lost in rectangular plates, the definition domains of bulk in-plane displacements u, (X1, X2, x3) are extended to 3D, and the definition
domains of the rest of the displacement components are extended to 2D.

3.2.3. Bending deformation mode of 2D material plate

The bending deformation mode of 2D material plates is also controlled by the competition between the intralayer deformation and
interlayer shear deformation modes. On the one hand, as the 2D material sheets are piled up, the demand for interlayer shear stress to
transfer loads between layers and to maintain planar cross-section during bending increases. This will gradually make the interlayer
shear deformation mode prevail in the strain energy sense. As shown in Fig. 7a, the percentage of shear strain energy reaches and
surpasses that of intralayer strain energy with increased n. Besides, the section may even be unable to maintain planar. As shown in
Fig. 7c and d, the distribution of intralayer normal strain at a cross-section becomes increasingly curvy with n growing. Therefore, the
increase in n tends to encourage the interlayer shear deformation and drive the deformed section curvy.

On the other hand, with the increase in R, the intralayer tension stress can accumulate more easily so that the steep decreasing trend
of its energy percentage is slowed down (Fig. 7a) and its gap with the ideal no-interlayer-shear scenario, i.e., the Kirchhoff plate, is
narrowed down even to neglectable extent. As shown in Fig. 7b, the intralayer normal strain gradually catches up with that of Kirchhoff
plates. Furthermore, the curvy cross-section tends to be straightened. The distribution of cross-section normal strain becomes line-
arized as R increases (Fig. 7c and d). At this time, the intralayer deformation mode becomes dominating.

Given that the uniformly loaded axisymmetric plate is a quasi-one-dimensional problem, its bending behavior is similar to that of a
beam. Nevertheless, it’s important to note that the CM2D plate model and the CM2D beam model are fundamentally different. In fact,
our proposed CM2D plate model (Egs. (19)) can handle general plate-like deformation modes. For instance, in the case of a rectangular
plate (the axisymmetry is broken), the results (see Fig.S2) indicate that the deformed normal lines, initially perpendicular to the middle
plane, become 3D curves in general and vary with coordinates, which are beyond the ability of a beam theory. A more detailed
discussion on the deformation modes of the plate within the CM2D framework will be addressed in our future work.
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Fig. 7. (a) The ratios of intralayer tension energy Uy, and interlayer shear energy Ug, of h-BN plate to its total strain energy U, with various n and
R. (b) The normalized intralayer normal strain of a 10-layer h-BN plate by its counterpart of Kirchhoff plate at r/R = 0.3 with various R. The
intralayer normal strain distribution at r/R = 0.3 for (c) R/t = 300 and (d) R/t = 700.
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3.2.4. Effective bending rigidity of 2D material plate

Journal of the Mechanics and Physics of Solids 194 (2025) 105911

As the critical parameter of 2D material plates, its bending rigidity has drawn a lot of attention(Wang et al., 2019; Ma et al., 2022).
In this subsection, we will discuss the bending rigidity of h-BN plates based on our CM2D plate model. According to the solution of the
Kirchhoff plate(Timoshenko and Woinowsky-Krieger, 1976), the effective bending rigidity of a plate can be expressed in terms of the

uniform loads q and the center deflection wy, as
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Fig. 8. The effective bending rigidity D, of (a) graphene and (b) h-BN plates as a function of layer number n parameterized by half length L, where
the ‘strong’ and ‘weak’ correspond to the no-interlayer-shear-deformation limit and the no-interlayer-shear-resistance limit. The dimensionless
effective bending rigidity Dey/Dgp of h-BN plate against (c) monolayer aspect ratio R/t parameterized by number of layers n, against number of
layers n parameterized by (d) monolayer aspect ratio R/t and (e) overall aspect ratio R/h, and against (f) normalized tension-shear coefficient ky,
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The dependence of D of two popular 2D materials, graphene and h-BN, are shown in Fig. 8a and 8b, respectively (see Table.S1 in
the Supplementary Information for material parameters).

Similarly, we will discuss the dimensionless effective bending rigidity Dy defined by Eq. (15), where the bending rigidity of
Kirchhoff plate Dg; is still evaluated through Eq. (14).

To determine the factors that may influence Doy, we denote the dimensionless coordinates and displacement field as7 =r /R, 2 =z

/t, W =w/wo, Uz = up/wo, ﬁg) = uﬁi) /wo, and obtain the dimensionless form of the governing equations Egs. (20) as
10/0 1 o*u,
— =+ )\u =0 22,
k2 or (0F+ F) R (222)
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Fig. 9. (a) Ilustration of the numerical model using Solid Mechanics module as implemented in COMSOL. (b) Zoomed-in view near the indenter tip
(R=1 nm) of the third principal strain distribution on the deformed configuration during indentation into h-BN materials. (c) The log-log plot of the
indentation force-normalized depth curve and (d) the semi-log plot of the inferred normalized reduced modulus-depth curve with indenter radius
R=1 nm, 5 nm, 10 nm and various material models. In (c) and (d), T.Iso. represents the classical transversely isotropic elasticity model, and S.Homo
represents the simple homogenization model as mentioned in Section 3.1.2. The inset in (c¢) gives an illustration of an indenter pressed into
a specimen.
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l 2 @ E +1£ 2 @+E n —n: @+ld_w =0 (22C)
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; 1 og,
g0 — g 4 = 2T 22d
L Y (22d)
for the surface, where Vz = ;?22+ % %. The dimensionless parameters in Eqgs. (22) turn out to be similar to their beam counterparts,

except that the deformation scale 2L in the beam is replaced here by R in the plate, i.e., k; = R/l;, ks = R/lp, @ =R /t. This suggests
that the dimensionless effective bending rigidity also depends on k¢, k;, and n.

Indeed, the dimensionless effective bending rigidity of 2D material plate behaves similarly to its beam counterpart with various
geometric parameters, R and n, but not exactly the same. As shown in Fig. 8a, Dy increases and approach a limit that also can be
described by Eq. (16), as the geometric scale of the plate R increases. Likewise, the effective bending rigidity of 2D material plate can be
slightly larger than the Kirchhoff plate as long as R is large enough and n is quite small. Dy still decreases as n increases, and
approximately proportionally to n=2 when n is large enough. This also suggests that Doy of 2D material plate scale with n, as n is large
enough. However, the decaying coefficient is smaller than that given by Eq. (17), as shown in Fig. 8b, where the solid lines shift slightly
downward from the dashed lines. When the overall aspect ratio A = R/h or the normalized tension-shear coefficient ki, is fixed, Beﬁc
still increases and quickly approaches a limit with increasing n (see Fig. 8c). This limit is dominated almost only by k., when n is not too
small, as shown in Fig. 8d. However, the master curve of beam given by Eq. (18), represented by the magenta dash line, can no longer
depict this limit well.

In addition, we further validate the CM2D model using the results of bubble experiments(Wang et al., 2019). The employed ma-
terial parameters are list in Table.S1 and the geometric parameters from experiments(Wang et al., 2019) are adopted. As shown in Fig.
S7, the predictions of effective bending rigidity through CM2D plate model and Eq. (21) are in good agreement with the results ob-
tained in experiments (Wang et al., 2019). All the results are always bounded by the two theoretical limits, i.e., the strong limit (red dot
line) corresponding to no interlayer shear deformation and the weak limit (black dash line) corresponding to no interlayer shear
resistance, consistent with previous works(Chen et al., 2022; Han et al., 2019; Huang et al., 2023; Ma et al., 2022).

3.3. Indentation of 2D materials

Indentation has become a powerful tool for material testing(Oliver and Pharr, 2010; Zhang and Needleman, 2021; Yuan et al.,
2023), among which depth sensing indentation technique can infer elastic modulus merely from the indentation load-depth data and
the shape function of the indenter(Oliver and Pharr, 1992). The extremely sharp tip of atomic force microscope, usually used as the
indenter in a nano-indentation test, features high curvature and forces the specimen to conform to its shape near the contact surface,
when pressed into a 2D material perpendicularly to its sheets. As a result, the topmost and following 2D material sheets need to bear
severe bending deformation. In this process, the surface layer effect and monolayer bending effect may play an important role, even
though the material volume may consist of countless 2D material sheets. In this subsection, we will study the indentation of a rigid
spherical indenter pressed into 2D material half-space within the proposed CM2D framework.

For an arbitrary smooth axisymmetric indenter pressed into a specimen (illustrated by the inset in Fig. 9¢), the reduced modulus can
be expressed as(Pharr et al., 1992; Sneddon, 1965)

_VvTS§
E’_T\/—A—C (23)

where, the unloading rigidity S = dP/dh; is the derivative of indentation force P with respect to indentation depth h;. A, is the pro-
jection area of contact surface, aka the shape function, depending on the distance between the contact edge and the indenter tip h,,
which can be inferred also through the force-displacement data as h. = h; — ¢P/S (Oliver and Pharr, 1992). For a rigid spherical
indenter, A, = 27zRh. — ﬂhf, and e can approximately take the value of paraboloid indenter as 0.75. For classical materials, the reduced
modulus E, only depends on the material parameters. For example, the reduced modulus of transversely isotropic materials indented
perpendicular to its isotropic plane by a rigid indenter is(Delafargue and Ulm, 2004; Lamuta, 2019)

Eq = 2 24)

SR (S T
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where Cj; is the element of stiffness matrix. Therefore, the reduced modulus is actually a comprehensive elastic parameter reflected by
the indentation test, which bridges the direct experiment measurements to the intrinsic elastic parameters of materials.

3.3.1. 3D axisymmetric model within the CM2D framework

Some problems, such as indention on half-space by axisymmetric indenters perpendicular to the isotropic plane, possess
axisymmetry. Thus, the governing equations can be simplified accordingly. To achieve this, we first re-express Egs. (1)~(4) and (6)~
(9) under a cylindrical coordinate system. Then, we leverage the axisymmetry of the deformation field, i.e., the angular component of
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displacement remains 0 during deformation. As a result, we can obtain the governing equations, for the ‘bulk’ part as

Eyp 0/0 1 0 (ou, ow _
-z <a+?) U+ Gy <T)z *?») +f=0 (252)
J 1\ ou, Pw  —
Gt<(5+;> o=+ ngw> +Eg - Dn V2, Vi w+f, =0 (25b)

and for the ‘surface’ part as
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2 i
where v2D =wmtra

is the 2D axisymmetric Laplace operator defined on isotropic plane. Unlike axisymmetric plate model Egs. (20)
which assumes the undeformed thickness, Egs. (25) take the deformation of thickness into consideration, i.e., w doesn’t equal w® in

general. The analytical solution can be subtle, necessitating the use of numerical methods.

3.3.2. Solution of indentation

To leverage the optimized code of COMSOL for solving contact problems, its Solid Mechanics module is adapted to approximate Eq.
(25). The problem is solved in a 2D domain, thanks to the axisymmetry. As shown in Fig. 9a, the indenter is modeled by a quarter of a
rigid circle with radius R. The 2D material specimen is divided into three parts according to the CM2D model (Fig. 2a). The stiffness
parameters Eap, 1, D, Dy of a monolayer 2D material sheet are assigned to the top boundary through ‘weak contribution’ to model the
topmost sheet. Below it is the half layer of interlayer media with transverse Young’s modulus E; and transverse shear modulus G;. Note
that an in-plane Young’s modulus E;,, three orders of magnitude smaller than E,, is also assigned to the half layer of interlayer media, so
that its stiffness matrix is not singular and meanwhile the disturbance caused by this operation can be neglected. It has been validated
that making E;, even smaller won’t cause appreciable difference. The following ‘bulk’ part is also basically transversely isotropic with
parameters described in Section 2, except that the bending modulus Dy, and Gaussian bending modulus D, are assigned to it by ‘weak
contribution’. The specimen spans 1000R in both width and height. It should be noted that the specimen size is sufficiently large to
model the material half-space, since a larger size won’t make any appreciable difference. The augmented Lagrangian method is
employed to solve the frictionless hard contact between the indenter and the specimen. Note that the adhesion between the indenter
and 2D materials is not considered at present(Li et al., 2016), which will be further explored in our future work. Besides, the normal
displacement of the bottom boundary is prescribed to be 0.

To investigate the size effect on the indentation, we set the radius of indenters as R=1 nm, 5 nm and 10 nm, respectively. For
comparison, we also model the classical transversely isotropic elasticity model (T.Iso.) and the simple homogenization model (S.
Homo). Fig. 9b shows the fringe of the third principal strain field distribution of the CM2D model around the indenters (R=1 nm). It’s
evident that compression strain will concentrate near the contact surface, and decays quickly away from it.

Fig. 9c exhibits the force-depth curves for various material models with various indenter radii. For the T.Iso. model, the force-depth
curve (yellow lines in Fig. 9¢) matches well the power function model P = ah" usually used to fit the unloading curves in indentation
tests(Oliver and Pharr, 1992). And the inferred reduced modulus of the T.Iso. (yellow lines in Fig. 9d) matches extremely well with the
classical prediction given by Eq. (24), regardless of the various indenter radii and indentation depths.

By contrast, the force-depth data of the S.Homo. (red lines in Fig. 9¢) and the CM2D (blue lines in Fig. 9c) models deviate from the
power function curve and the reduced moduli from the classical prediction, when h; is relatively small. The forces needed for the same
indenter to reach the same depth increase as the monolayer bending effect and surface layer effect are added in turn, because both of
them increase the stiffness of materials. This is also reflected in the reduced moduli, as shown in Fig. 9d. As the depth increases
sufficiently, both the force and the reduced modulus curves merge with their counterparts of the T.Iso. Hence, there is a size effect with
respect to the standard indentation model. Moreover, this size effect becomes even stronger as the radius of the indenter decreases. It
should be noted that the process we discussed above is purely elastic. Therefore, the size effect identified here is different from what
has been reported before, which is mainly caused by dislocation and plasticity (e.g., (Nix and Gao, 1998; Pharr et al., 2010; Danas et al.,
2012)). Furthermore, we also validate the modeling of indentation by MD simulations (detailed in S4 of the Supplementary Infor-
mation). The obtained indentation force-depth curves (Fig.S4c), as well as the deformation of top surface (Fig.S4d) are comparable to
their counterparts predicted by CM2D model.
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To understand this size effect, let’s first consider simplified cases, i.e., the indentations of suspended membrane and beam
(Fig. 10a). When a suspended membrane is indented by an indenter, it will fit the shape of the indenter within the contact surface and
departs with the indenter at the contact edge tangential to the indenter, because a membrane cannot resist bending. By contrast, the
bending rigidity of a beam won’t allow it to fit the indenter as well as a membrane does. The curvature of a beam must be continuous.
Compared with a membrane, the contact area shrinks yet the bending rigidity requires the beam to keep a lower profile even outside
the contact area, as if it was indented by an even larger indenter, as indicated by the black dot line in Fig. 10a.

In some sense, the T.Iso. model is similar to a membrane, while the CM2D and S.Homo. models to the beam. The profiles of the
indenter tip and top boundaries of specimens shown by the inset in Fig. 10b confirm this similarity. Indeed, as shown in Fig. 10b, the
contour of displacement field w along the indentation direction of the T.Iso. model is more concentrated, followed by the S.Homo.
model, and then the CM2D model. For example, the w/R = 0.04 line of the CM2D model can be nearly three times far away from the
indenter tip than that of the T.Iso. model. The line of the S.Homo. model sits between the two near the top boundary and is much closer
to that of the T.Iso. model. So, the monolayer bending effect does make the CM2D and S.Homo. models appear to be indented by larger
indenters, leading to more area near the contact line being compressed. This accounts for the upward-shifted curves of indentation
forces and reduced moduli of the CM2D and S.Homo. models. Besides, this also suggests that without monolayer bending effect, the
size effect will be lost, and without surface layer effect, the size effect will be suppressed to a large extent.

As the indenter is pressed into the specimen by a sufficiently large depth, the indentation force increases sharply, resulting in a
significant response from the specimen. The top boundary is forced by the below material volume of the specimen to contact closely
with the indenter or even partly warp it. The monolayer bending effect caused as-if-a-larger-indenter effect dies away. Consequently,
the contours of displacement fields approach each other and the corresponding top boundary profiles become hard to distinguish (see
Fig. 10c and its inset). Besides, due to the increasing depth, the highly deformed volume expands and more layers become actively
involved in the deformation to a large extent, which further dwarfs the effect of monolayer sheet bending rigidity. Therefore, the
curves of indentation forces and reduced moduli of the CM2D and S.Homo. models gradually converge with those of the T.Iso. model
and the size effect becomes insignificant.

Based on the above analyses, we can conclude that a smaller indenter radius manifests the size effect through at least two aspects.
On the one hand, a smaller radius itself renders an even stronger curvature, which magnifies the monolayer bending effect, because the
specimen is forced to fit with the shape of the indenter on the contact surface. This will lead to the upward shift of the curves of force
and reduced modulus when the depth is relatively small as shown in Fig. 9c and d. On the other hand, the indenter needs to be pressed

(2)

r/R . . . ' ¥/R

Fig. 10. (a) Schematic illustration of bending deformation modes for suspended membrane and beam under indentation, respectively. Contours of
the normalized displacement field along the indentation direction when (b) h;/R = 0.01 and (c) h;/R = 1. The solid line, dash line and dot line
represent the CM2D, S.Homo and T.Iso. models, respectively. The insets in (b) and (c) give the corresponding profiles of the indenter tip and the top
boundaries of the specimens.
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relatively deeper so that sufficient pressure can be accumulated and the top boundary can be forced to embrace the smaller indenter.
This delays the merging of the force and reduced modulus curves, and thus, enlarges the range of depth dependence.

4. Discussion on the monolayer bending and surface layer effects

The above analysis indicates that the CM2D framework can be easily transferred to specific mechanical problems, such as beam,
plate and indentation. However, we are still limited to specific materials and have not systematically analyzed the monolayer bending
and surface layer effects. As the bulging test is ubiquitous in nano-experiments(Wang et al., 2017, 2019; Yue et al., 2012; Cui et al.,
2023), in this section, we take the uniformly loaded circular plate as an example to study the two special effects of 2D materials so that
we can take the bending rigidity as an indicator for the convenience of discussion.

4.1. Monolayer bending effect
To measure the monolayer bending effect, we define

Dey — D,
Err(Dyy; D) = ffiffff” x 100% (26)

as the relative error caused by neglecting this effect, where D is the effective bending rigidity of the CM2D plates as defined by Eq.
(21) and Deg p, can be obtained as the effective bending rigidity of the CM2D plate model with D,, = 0.

Fig. 11a illustrates the contour plot of Err(Deff; Dm) given in the kj, k; coordinate system, with baseline parametersn =5, A = 20,
t=0.3201 nm and G,=7.655 GPa. It’s evident that Err(Dey; Dp,) varies rapidly in a ribbon-like zone, where the contour lines are
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Fig. 11. (a) The contour over k, and k, of relative error Err(Des; Dy,) brought by neglecting the monolayer bending effect with n = 5. The positions
of several 2D materials are marked, whose parameters can be found on Table.S1. The dashed arrows I~III indicate the evolution paths of contour
points as the corresponding normalized parameter increases. (b) The variation of contour lines upon various parameters with baselinen =5, A =
20, t = 0.3201 nm, and G; = 7.655 GPa. Variation of Err(Deff:,Dm) as a function of (c¢) k, with k; = 0.1, 10,1000 and (d) k; with k, = 1,10,
1000, 50000.
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crowded together. By varying these baseline parameters, it’s found that the contour lines don’t move when A, t or G, varies, but they
shift toward the large Err(Deyy; D) zone as n increases (Fig. 11b), though the extreme values of Err(Dey; Dp,) are maintained. In other
words, Err(Deﬁc;Dm) remains constant so long as kp, k; and n reamin unchanged, and it decreases as n increase.

As shown in Fig. 11c, Err (Deff; Dm) decreases, i.e. the importance of monolayer bending effect is undermined, as k; increases upon
constant k; and n. On the one hand, the increase in k;, = R/I, with a constant R means a decreasing bending-shear characteristic length
Iy = /Dn/Git, which can be caused by either a smaller monolayer bending rigidity D, or a larger interlayer shear stiffness Gt.
Obviously, a smaller Dy, itself means a weaker monolayer bending effect. And strong interlayer shear stiffness can encourage the
intralayer deformation mode by efficiently transferring loads between adjacent layers, as mentioned in Section 3.2.3, which dwarfs the
contribution of monolayer bending rigidity to the overall bending resistance and thus weakens the monolayer bending effect. On the

other hand, if it is the increase in R that drives k; to increase while k; = R/l; remain unchanged, then l; = /Eapt/ (l - yg) G, will have

to increase, leading to a relatively strong intralayer stretch resistance. As a result, the contribution of monolayer bending rigidity is also
decreased, impairing the monolayer bending effect.

On the contrary, the increase in k¢, upon constant k, and n, can manifest the monolayer bending effect. As shown in Fig. 11d,
Err(Deﬁ; Dm) increases with k; for a given k;. When R remains constant, k, increases upon decreasing l;, which leads to a relatively weak
intralayer stretch resistance and thus makes the monolayer bending rigidity more important. When R drives k; to increase while k;

remain constant, I, will increase, which means a relatively strong monolayer bending rigidity and thus manifests the monolayer
bending effect.

We have discussed the variation of Err(Deﬁ; Dm) as functions of dimensionless parameters n, k; and k;, respectively. To give a more
straightforward account, we shall discuss Err(Deff; Dm) upon the modulation of one specific parameter each time, like Dy, Eop, G; or R.
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Fig. 12. (a) The contour over k, and k, of relative error Err(Dy; surf.) brought by neglecting the monolayer bending effect with n = 5. The positions
of several 2D materials are marked, whose parameters can be found on Table.S1. The dashed arrows I~III indicate the evolution paths of contour
points as the corresponding normalized parameter increases. (b) The variation of contour lines upon various parameters with baselinen =5, A =
20, t = 0.3201 nm, and G, = 7.655 GPa. Variation of Err(Dey;surf.) as a function of (c) k, with k; = 0.1, 10,1000 and (d) k. with k, = 1,10,
1000, 50000.

21



H. Liu et al. Journal of the Mechanics and Physics of Solids 194 (2025) 105911

For the convenience of discussion, we normalize all the adjusted parameters by the corresponding baseline parameters of 5 layer h-BN
with radius Rp=25.6 nm (i.e., see Table.S1 and Fig. 11a for details). The normalized parameters are distinguished by underlines. For
example, when only the radius R is adjusted, we have the normalized parameter R = R/Rj.

As shown in Fig.S3a, an increase in D,, obviously represents more important monolayer bending effect, leading to the increase in
Err(Deﬁ;Dm). Besides, considering kyx1/v/Dp, an increase in D,, will exclusively reduce k,, which also induces the increase in
Err(Deff;Dm), reflected by the dashed arrow I in Fig. 11a . On the contrary, the increase in E,;, G, or R causes the decrease in
Err(Deg; D), because each of them promotes the contribution of intralayer deformation resistance to overall bending rigidity. This is
self-evident for E,;,. And as discussed in Section 3.2.3 and 3.2.4, either an increase in G, or R will promote the interlayer load transfer,
thus amplifying the significance of the intralyer stiffness, which in turn diminishes the contribution of monolayer bending rigidity. In
terms of the dimensionless parameters k; and k,, an increase in E,j, can exclusively decrease k, (x1/v/Esp), reflected by the dashed
arrow Il in Fig. 11a, which leads to an decrease in Err(Deff; Dm). In addition, considering k;,k,R+/G, an increase in either G, or R will
increase k; and k; proportionally, represented by the dashed arrow III with a slope of 45° in Fig. 11a, which also indicates an decrease
in Err(Degs; D).

Furthermore, several typical 2D materials (parameters listed in Table.S1) are marked in Fig. 11a. For a specific material, the
characteristic lengths I, [, is fixed. Then, the two dimensionless coefficients k; = R/I;,k; = R/l, only depend on radius R. Thus, the
monolayer bending effect only depends on the deformation length scale R and layer number n. To show this, we plot the contour of
Err(Deg; Dm) over n and the monolayer aspect ratio a = R/t for graphene and InSe as two typical examples (Fig.S5a and S5¢ in the
Supplementary Information). The contour lines serve as the critical lines of n and @, beyond which neglecting the monolayer bending
effect would cause error no more than the corresponding contour line values.

4.2. Surface layer effect
Similarly, as a measurement of the surface layer effect, we define the relative error caused by neglecting it, i.e.,

D,y — D,
Err(Deg; surf.) = eff#j{ffsmmo x 100% (27)

where D s Homo. is the effective bending rigidity of the S.Homo. model defined similar to Eq. (21).

Fig. 12a illustrates the contour plot of Err(Deg; surf.) as a function of k, and k,, under the same baseline parameters as in Section 4.1.
It’s evident that Err(Deg; surf.) also varies rapidly within a narrow ribbon-like zone, but with a sharp corner. The contour lines stay still
as A,t or G, changes (Fig. 12b). When n increases, not only the contour lines shift rightward, but also their values decrease. For
example, the values of contour lines decrease by an order of magnitude when n increases from 5 to 50. This suggests that the surface
layer effect becomes weak quickly as n increases, which is obvious because the specific surface area decreases. When n is sufficiently
large, the surface layer effect can be neglected. For example, on the scenario of Fig. 12b, neglecting the surface layer effect only causes
an error of less than 4%.

As shown in Fig. 12¢, Err(D.g; surf.) increases with k. This is because the surface layer effect is directly related to the contribution
of the intralayer deformation of the outmost layers to the overall bending deformation. When k; increases with a fixed R, I, decreases,
suggesting a relatively large interlayer shear resistance for interlayer load transfer during bending. Thus, the outmost layers play a
more important role, manifesting the surface layer effect. On the other hand, if R increases, I, will increase to keep k; constant, resulting
a relatively large intralayer stiffness. Then, the surface layer effect is also magnified.

When k; increases, Err(Deff; surf ) increases at first, and then decreases finally, between which there will be a plateau if k; is large
enough (Fig. 12d). The increase in k; originates from the relative decrease in I;,. When [, is relatively large, the intralayer stiffness is
relatively large. It is hard for Interlayer shear force to stretch or compress individual layers. Deformation mainly happens through
monolayer bending and interlayer shearing. Thus, the outmost layer intralayer stiffness becomes insignificant. As the intralayer
stiffness relatively reduces, the intralayer deformation becomes important, and so is the stiffness of the outmost layer. But if the
intralayer stiffness keeps diminishing compared to interlayer shear stiffness, it will enter a zone where intralayer deformation mode is
so flexible that the corresponding stiffness becomes unimportant. Hence, the surface layer effect has a non-monotonic trend upon the
increase in k;.

Similarly, we also discuss Err(Deff; surf.) upon the modulation of one specific parameter each time. The same set of baseline pa-
rameters are employed, as well as the same definition of normalized parameters. As shown in Fig.S3b, an increase in D, will promote
the contribution of monolayer bending rigidity to the overall bending rigidity and in turn dwarf that of the outmost layers, which can
also be reflected by a decreasing trend of Err(Dey; surf.) following the dashed arrow Iin Fig. 12a. Besides, an increase in Eyy, leads to the
increase and then decrease in Err(Deg; surf.). That is because, the influence of intralyer stiffness gradually increases as E,, increases
from small values. However, when E,j, is big enough, the intralayer stiffness becomes so strong that the interlayer load transfer be-
comes the bottleneck. In other words, the stronger the intralayer stiffness is, the harder for interlayer to transfer load. As a result, the
influence of surface layer effect decreases as E,j, further increases, which can also be reflected by the dashed arrow II in Fig. 12a. In
addition, an increase in either G, or R will promote the interlayer load transfer, and thus amplify the significance of the intralyer
stiffness. Therefore, the surface layer effect becomes more pronounced. The dashed arrow III with a slope of 45° in Fig. 12a also shows
an increase trend of Err(Deff; surf.) with an increase in either G, or R.
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Moreover, several typical 2D materials (parameters listed in Table.S1) are also marked in Fig. 12a. Obviously, for a specific ma-
terial, the surface layer effect also only depends on the deformation length scale R and layer number n. To show this, we plot the
contour of Err(D,g; surf.) over n and the monolayer aspect ratio a = R/t for graphene and InSe as two typical examples (Fig.S5b and
S5d in the Supplementary Information). The contour lines serve as the critical lines of n and @, beyond which neglecting the surface
layer effect would cause error no more than the corresponding contour line values.

5. Conclusion remarks

In this work, we present a general 3D continuum mechanics framework for 2D Materials (CM2D), which is transversely isotropic,
integrating monolayer bending and surface layer effects. All the constitutive parameters of the CM2D model have well-defined physical
meanings and can be directly measured in experiments or atomic simulations. Under the framework of CM2D, the mechanical be-
haviors of beam-like, plate-like deformation and indention of 2D materials are studied. The main findings are as follows:

(1) The overall bending deformation modes of both 2D material beams and plates are controlled by the competition between the
intralayer deformation mode and interlayer shear deformation mode.

(2) For beams and circular plates, the bending rigidity can be fully characterized by four dimensionless parameters, i.e., tension-
shear coefficient k;, bend-shear coefficient k;, geometrical aspect ratio @ and number of layers n.

(3) Thessize effect on the indentation of 2D materials emerging at the pure elastic deformation regime is identified, distinct from the
size effect caused by plasticity.

(4) The monolayer bending and surface layer effects play an important role in the mechanical behaviors of 2D materials, which only
depends on the three dimensionless parameters, i.e., k;, k; and n.

Note that we intend to present a framework to formulate a more general 3D continuum mechanics model for 2D materials, so the
focus is limited to small deformation scale to keep the model straightforward. The main challenge of extending the present model to
account for finite deformation is to develop a proper interlayer constitutive relationship by taking the interlayer sliding into
consideration, which will be addressed in our future work. Hopefully, such extended model can quantitatively account for the rela-
tionship between sliding and bending, and thus the bending induced softening observed in experiments(Han et al., 2019). Addi-
tionally, for general vdW heterostructures stacked in arbitrary order, the continualization from multilayer 2D materials to its
multilayer continuum model still hold, where each layer represents an individual sheet of 2D material and each interlayer medium
represents different interlayer interactions between various 2D materials. However, internal homogenization of the multilayer con-
tinuum model may encounter difficulty due to the arbitrary distribution of various 2D material sheets. Besides, for moiré hetero-
structures, the moiré in-plane lattice reconstruction regulates out-of-plane moiré morphology, thereby modifying the local registry of
stacking status of heterostructures(Huang and Liu, 2024). This could possibly enlarge the period of spatial distribution of local
interlayer shear modulus and distance, potentially impairing the accuracy of the current model. Despite this, our 3D continuum
mechanics model can not only provide guidance for the mechanics and applications of 2D materials, but also shed light on the physical
origin of the strain gradient, high-order moduli, and couple stress in the high-order continuum mechanics theories.
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